81 research outputs found

    Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms

    Get PDF
    Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium Lysobacter capsici AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms. Under nutritionally limited conditions, MALDI-qTOF-MSI revealed that AZ78 is able to release a relevant number of antimicrobial secondary metabolites belonging to the families of 2,5-diketopiperazines, cyclic lipodepsipeptides, macrolactones and macrolides. In vitro tests confirmed the presence of secondary metabolites toxic against Pythium ultimum and Rhodococcus fascians in AZ78 cell-free extracts. Subsequently, UHPLC-HRMS/MS was used to confirm the results achieved with MALDI-qTOF-MSI and investigate for further putative antimicrobial secondary metabolites known to be produced by Lysobacter spp. This technique confirmed the presence of several 2,5-diketopiperazines in AZ78 cell-free extracts and provided the first evidence of the production of the cyclic depsipeptide WAP-8294A2 in a member of L. capsici species. Moreover, UHPLC-HRMS/MS confirmed the presence of dihydromaltophilin/Heat Stable Antifungal Factor (HSAF) in AZ78 cell-free extracts. Due to the production of HSAF by AZ78, cell-free supernatants were effective in controlling Plasmopara viticola on grapevine leaf disks after exposure to high temperatures. Overall, our work determined the main secondary metabolites involved in the biocontrol activity of AZ78 against plant pathogenic oomycetes and Gram-positive bacteria. These results might be useful for the future development of this bacterial strain as the active ingredient of a microbial biopesticide that might contribute to a reduction in the chemical input in agricultur

    Integration of MALDI FTICR MSI data with the open-source software Cytomine

    Full text link
    editorial reviewedOur skin is constantly exposed to solar radiation, high oxygen levels, and environmental pollutants. Our study aims to target specific native (LipS) and oxidized phospholipids (oxLipS) that are known to be senescence-associated secretory phenotype (SASP) related (i.e., LysoPC, oxPAPC). The production of these oxidized species is obtained after exposure to UV light. Here, we employ MALDI FTICR mass spectrometry imaging (MSI) to visualize and identify lipid species of interest in an organotypic model system and to integrate this data with the open-source software Cytomine.COMULIS COST ACTIO

    Biomechanical properties of fishing lines of the glowworm Arachnocampa luminosa (Diptera; Keroplatidae)

    Get PDF
    Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa. We analysed tensile properties of the fishing lines of the New Zealand glowworm Arachnocampa luminosa under natural and dry conditions and measured their adhesion energy to different surfaces. The capture system of A. luminosa is highly adapted to the prevailing conditions (13–15 °C, relative humidity of 98%) whereby the wet fishing lines only show a bonding ability at high relative humidity (>80%) with a mean adhesive energy from 20–45 N/m and a stronger adhesion to polar surfaces. Wet threads show a slightly higher breaking strain value than dried threads, whereas the tensile strength of wet threads was much lower. The analyses show that breaking stress and strain values in Arachnocampa luminosa were very low in comparison to related Arachnocampa species and spider silk threads but exhibit much higher adhesion energy values. While the mechanical differences between the threads of various Arachnocampa species might be consequence of the different sampling and handling of the threads prior to the tests, differences to spiders could be explained by habitat differences and differences in the material ultrastructure. Orb web spiders produce viscid silk consisting of β-pleated sheets, whereas Arachnocampa has cross-β–sheet crystallites within its silk. As a functional explanation, the low tear strength for A. luminosa comprises a safety mechanism and ensures the entire nest is not pulled down by prey which is too heavy

    Correlated Multimodal Imaging in Life Sciences:Expanding the Biomedical Horizon

    Get PDF
    International audienceThe frontiers of bioimaging are currently being pushed toward the integration and correlation of several modalities to tackle biomedical research questions holistically and across multiple scales. Correlated Multimodal Imaging (CMI) gathers information about exactly the same specimen with two or more complementary modalities that-in combination-create a composite and complementary view of the sample (including insights into structure, function, dynamics and molecular composition). CMI allows to describe biomedical processes within their overall spatio-temporal context and gain a mechanistic understanding of cells, tissues, diseases or organisms by untangling their molecular mechanisms within their native environment. The two best-established CMI implementations for small animals and model organisms are hardware-fused platforms in preclinical imaging (Hybrid Imaging) and Correlated Light and Electron Microscopy (CLEM) in biological imaging. Although the merits of Preclinical Hybrid Imaging (PHI) and CLEM are well-established, both approaches would benefit from standardization of protocols, ontologies and data handling, and the development of optimized and advanced implementations. Specifically, CMI pipelines that aim at bridging preclinical and biological imaging beyond CLEM and PHI are rare but bear great potential to substantially advance both bioimaging and biomedical research. CMI faces three mai

    Color fine-tuning of optical materials through rational design

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We report on the feasibility for color fine-tuning of optical materials using rational design principles based on chemical reasoning. For this purpose, a modular framework for the construction of symmetrical cap-linker-cap compounds, using triarylamine caps and oligothiophene linkers, is applied. The chosen structural scaffolds are heavily used in recent industrial applications and provide five possibilities for altering their electronic and steric properties: electron donor/acceptor groups, planarization/deplanarization, and modulation of the π-conjugation length. Permutation of the used building blocks leads to a set of 54 different molecules, out of which 32 are synthesized and characterized in solution as well as in example fabricated OLED devices. This setup allows for color fine-tuning in the range of 412 nm to 540 nm with typical steps of 4 nm. In addition, to further benefit from the large experimental data set the spectroscopic results are used to benchmark quantum chemical computations, which show excellent agreement thus highlighting the potential of these calculations to guide future syntheses

    Spectral Features Differentiate Aging-Induced Changes in Parchment—A Combined Approach of UV/VIS, µ-ATR/FTIR and µ-Raman Spectroscopy with Multivariate Data Analysis

    No full text
    From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295–3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week. UV/VIS spectroscopy detected changes in the sample surface appearance, showing browning after light-aging and increased brightness after SO2-aging. Band deconvolution of ATR/FTIR and Raman spectra and factor analysis of mixed data (FAMD) revealed characteristic changes of the main parchment components. Spectral features for degradation-induced structural changes of collagen and lipids turned out to be different for the employed aging parameters. All aging conditions induced denaturation (of different degrees) indicated by changes in the secondary structure of collagen. Light treatment resulted in the most pronounced changes for collagen fibrils in addition to backbone cleavage and side chain oxidations. Additional increased disorder for lipids was observed. Despite shorter exposure times, SO2-aging led to a weakening of protein structures induced by transitions of stabilizing disulfide bonds and side chain oxidations

    Tick attachment cement reviewing the mysteries of a biological skin plug system

    No full text
    The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future.(VLID)480005

    Gel Electrophoretic and Mass Spectrometry-based methodologies in the quality study of Biopharmaceuticals

    No full text
    Modern analytical methodologies play an essential role regarding the quality evaluation of complex components, such as biologicals, where their implementation turned out to be crucial to assure their quality, safety, and efficacy. Glycoprotein hormones possess a highly complex structure and the study of their quality requires advanced analytical methodologies. Therefore, the aim of this study was the evaluation of suitable analytical methods for the quality study of such complex compounds. In order to satisfy the aim, 1D-SDS-PAGE and 2D gel electrophoresis in conjunction with mass spectrometry-based analyses were implemented. Gel electrophoretic techniques revealed the pI, Mr and glycoforms pattern, while MS analyses shed light upon the identity, structural integrity and glycosylation extent. The results demonstrated high complexity and extreme heterogeneity, typical for glycoproteins. Mass spectrometry provided information regarding structural identity parameters and glycosylation model. This methodology proved to be capable for the determination of purity and structural integrity of such complex compounds, although further investigations are required to fully understand glycosylation pattern since it has a significant effect on the pharmacokinetics and their biological activity

    Proteome profiling illustrated by a large-scale fed-batch fermentation of Penicillium chrysogenum

    Get PDF
    Filamentous fungi are employed for the large-scale production of value-added products, including organic acids, enzymes, and antibiotics and bioprocess characterization is essential for production optimization but relies on empiricism-based strategies. Protein expression profiles in an industrial scale, 180 h fed-batch fermentation of Penicillium chrysogenum are presented. The biomass of P. chrysogenum, as well as the specific penicillin V production rate and fungal morphology were monitored during fermentation to be compared with obtained protein profiles. Our results demonstrate a correlation between proteomics data and biomass concentration, morphological changes, and penicillin production
    • …
    corecore